General Information										
Course Code	252	Level/Year	4/2 nd	Required (R) / Selected Elective (SE)		R				
Credit Hours	Theory	2	Lab	1	Total	3				
Prerequisites	NA	Course Coordinator		Dr. Chamandeep Kaur						
Corequisites	NA	Track Leader		Dr. Ali Tahir						

Course Code: ITEC252

Course Description

This course addresses principles of digital design, such as combinational and sequential logic, and digital building blocks, and builds on this to introduce various processor architectures, and the interfaces between hardware and program code. Initially, the various number system suitable for representing information in digital systems and binary codes are illustrated with its conversions and arithmetic operations. Then, this course introduces the basic postulates of Boolean algebra and demonstrates the correlation between Boolean expressions and their corresponding logic diagrams. In addition, this course covers canonical, and standards forms using the Karnaugh mapping method for simplifying Boolean functions. Besides, this course deals with various combinatorial circuit components like the adder, subtractor, decoder, encoder, multiplexer, and de-multiplexer and sequential circuit components such as registers, shift registers, and counters along with memory circuits. In addition, this course discusses MIPS and AI-32 architectures, assembly and machine languages, and operands. Lastly, it will explain compile and run a program using high level code and assembly code.

Course Objectives: On completion of the course, the student will be able to:

- Understand the concepts of digital and number systems using various techniques in detail.
- Outline Boolean algebra, Boolean function, Canonical, and Standard forms using the Karnaugh Map.
- Identify various types of registers, counters, and storage elements including flip flops, laches, and memory.
- Implement the design of combinational and sequential circuits using logic gates.
- Learn the different architectures, microarchitectures, assembly language, and instructions to compile and run a program on modern computers.

Course Contents					
List of Topics	Weeks				
CH 1: Digital System and Binary Numbers	1, 2, 3				
CH 2: Boolean Algebra, Logic Gates and Gate Level Minimization	4, 5, 6				
CH 3: Combinational and Sequential Logic Circuits	7, 8, 9				
CH 4: Registers Counters and Memory	10, 11, 12				
CH 5: Computer Architecture	13, 14, 15				

Textbook

- Digital Design and Computer Architecture, ARM Edition, by Sarah L. Harris, David Money Harris, Morgan Kaufmann Publishers, 2018, ISBN: 0128000562
- M. Morris Mano," Digital Design", Prentice Hall, Pearson Education International, 5th Edition, 2013. ISBN: 9780132774208.

Reference Materials

Computer Architecture, Sixth Edition: A Quantitative Approach by John Hennessy, David Patterson, 6th Edition, Morgan Kaufmann, 2019, ISBN: 0128119055ISBN: 0128000562.

Course Learning Outcomes								
CLO		Mapped PI						
CLO#01	Define the fund such as Boolean computer archi	PI 1.1						
CLO#02	Explain combiand tools.	PI 1.2						
CLO#03	Recognize and and counters.	PI 1.3						
CLO#04	Compare diffe their instruction	PI 2.2						
CLO#05	Implement and flip-flops, coun	PI 2.3 PI 2.4						
CLO#06	Produce clear audiences, delir appropriate visi issues to team i	PI 3.1 PI 3.2 PI 3.3						
CLO-PI-S	O Mapping							
	SO-1	SO-2	SO-3	SO-4	SO-5	SO-6		
CLO#01	PI 1.1	-	-	-	-	-		
CLO#02	PI 1.2	-	-	-	-	-		
CLO#03	PI 1.3	-	-	-	-	-		
CLO#04	-	PI 2.2	-	-	-	-		
CLO#05	-	PI 2.3 PI 2.4	-	-	-	-		
CLO#06	-	-	PI 3.1 PI 3.2 PI 3.3	-	-	-		