Course Name	OPERATING SYSTEMS	Course Code	COMP 333							
Credit	2	Contact Hours	Theory	Lab	Total					
Hours	3	Contact Hours	2	2	4					
Offered as	University Requirement College Requirement Program Requirement Core Elective									
Level	5	Prerequisite	NIL							
			•							

Course Description:

This course introduces a detailed description about operating system objectives, functions and core concepts. Topics include operating system principles, file management systems, memory management, processes and threads, scheduling algorithms and deadlocks.

Upon completion, the student will be able to:

- Understand the basic concepts underlying operating systems and how a typical operating system works.
- Describe the functions and design of operating systems, processes and threads.
- Analyze the main concept behind traditional (non-distributed) operating systems.
- Explain the algorithms used in CPU Scheduling and virtual memory management.
- Discuss the algorithms used in I/O, file management and deadlocks.

Grading	Exam 1	\boxtimes	10%	Exam 2	10%	Assignment(s)	\boxtimes	20%
	Mini Project		40%	Lab Exam	20%	Final Exam		

Text Book:

- William Stallings, "Operating Systems-Internals and Design Principals", Prentice Hall, 8th Edition, ISBN-13: 9780133805918,
 2014
- ◆ <u>Abraham Silberschatz</u>, <u>Peter B. Galvin</u>, <u>Greg Gagne</u>, "Operating System Concepts", Wiley Publications, 9th Edition, ISBN: 978-1-118-063333-0, 2012.

Reference Book:

♦ Andrew S. Tanenbaum, "Modern Operating Systems", Pearson, 3rd Edition, ISBN: 978-0-13-813459-4, 2009.